您好,欢迎访问安徽省农业科学院 机构知识库!

Isolation and characterization of three cadmium-inducible promoters from Oryza sativa

文献类型: 外文期刊

作者: Qiu, Chun-Hong 1 ; Li, Hao 1 ; Li, Juan 1 ; Qin, Rui-Ying 1 ; Xu, Rong-Fang 1 ; Yang, Ya-Chun 1 ; Ma, Hui 1 ; Song, Feng- 1 ;

作者机构: 1.Anhui Acad Agr Sci, Rice Res Inst, Key Lab Rice Genet Breeding Anhui Prov, Hefei 230031, Peoples R China

2.Anhui Acad Agr Sci, Rice Res Inst, Key Lab Rice Genet Breeding Anhui P

关键词: Cadmium stress;Rice;Inducible promoter;Heavy metals

期刊名称:JOURNAL OF BIOTECHNOLOGY ( 影响因子:3.307; 五年影响因子:3.778 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cadmium (Cd) is an important soil pollutant. Developing genetically engineered crops might be a feasible strategy for Cd decontamination and damage prevention. Both genes and promoters are critical for the effective construction of genetically modified plants. Although many functional genes for Cd tolerance and accumulation have been identified, few reports have focused on plant Cd-inducible promoters. Here, we identified three Cd-inducible genes in the rice genome: two tau class glutathione S-transferase (GSTU) genes, OsGSTU5 and OsGSTU37, and an HSP20/alpha crystallin family protein gene, OsHSP18.6. The promoter sequences were isolated and tested in transgenic rice lines using a GUSplus reporter gene. All of the promoters exhibited low background expression under normal conditions and could be strongly induced by Cd stress. Although their strength was comparable to that of the constitutive OsACTIN promoter under Cd stress, their time-dependent expression patterns under both short- and long-term Cd exposure were markedly different. The responses of the three promoters to other heavy metals were also examined. Furthermore, heavy metal-responsive cis elements in the promoters were computationally analyzed, and regions determining the Cd stress response were analyzed using a series of truncations. Our results indicate that the three Cd-inducible rice promoters described herein could potentially be used in applications aimed at improving heavy metal tolerance in crops or for the bio-monitoring of environmental contamination. (C) 2015 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Heavy metal accumulation characteristics and adaptability of different petunia varieties planted on urban green space. Zhang, Wen-Jun,Li, Xiao-Kun,Wu, Ji,Lu, Jian-Wei,Wu, Ji,Chen, Fang.

[2]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[3]A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Zeng, Xiuyu,Tang, Ran,Guo, Herong,Ke, Shanwen,Xu, Zhenjiang,Xie, Xin-Ming,Zhang, Xiang-Qian,Teng, Bin,Hung, Yu-Hung,Hsieh, Tzung-Fu,Hung, Yu-Hung,Hsieh, Tzung-Fu.

[4]Biofortification of rice grain with zinc through zinc fertilization in different countries. Yazici, A.,Cakmak, I.,Phattarakul, N.,Rerkasem, B.,Li, L. J.,Wu, L. H.,Zou, C. Q.,Zhang, F. S.,Ram, H.,Sohu, V. S.,Kang, B. S.,Surek, H.,Kalayci, M..

[5]Comparison of physicochemical characteristics between white-belly and white-core rice grains. Xi, Min,Zhao, Yanling,Lin, Zhaomiao,Zhang, Xincheng,Ding, Chengqiang,Tang, She,Liu, Zhenghui,Wang, Shaohua,Ding, Yanfeng,Xi, Min,Liu, Zhenghui,Ding, Yanfeng.

[6]Mutation of rice (Oryza sativa L.) LOX-1/2 near-isogenic lines with ion beam implantation and study of their storability. Song, Mei,Wu, Yuejin,Liu, B. M.,Jiang, J. Y.,Xu, X.,Yu, Z. L.,Zhang, Ying.

[7]Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Li, ZF,Wan, JM,Xia, JF,Yano, M.

[8]Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Luo, Yanchang,Ong, Kar Hui,Yin, Zhongchao,Luo, Yanchang,Ma, Tingchen,Luo, Zhixiang,Li, Zefu,Yang, Jianbo,Zhang, Aifang,Yin, Zhongchao.

[9]Generation of targeted mutant rice using a CRISPR-Cpf1 system. Xu, Rongfang,Qin, Ruiying,Li, Hao,Li, Dongdong,Li, Li,Wei, Pengcheng,Yang, Jianbo.

[10]Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Duan, Yong-Bo,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Li, Hao,Yang, Ya-Chun,Ma, Hui,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo,Duan, Yong-Bo.

[11]The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Li, Hongying,Ye, Xinxin,Geng, Zhigang,Zhou, Hongjian,Zhang, Yunxia,Zhao, Huijun,Wang, Guozhong,Li, Hongying,Guo, Xisheng,Zhao, Huijun.

[12]Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). Ni, Da-Hu,Duan, Yong-Bo,Yang, Ya-Chun,Wei, Peng-Cheng,Li, Hao,Song, Feng-Shun,Ni, Jin-Long,Yang, Jian-Bo,Li, Juan,Duan, Yong-Bo,Wei, Peng-Cheng,Li, Hao,Xu, Rong-Fang,Li, Chun-Rong,Liang, Dan-Dan. 2014

[13]Study on the variation of the distant crossing rice by ion beam implantation. Wu, YJ,Zhang, Y,Wu, JD,Tong, JP,Li, H,Zheng, LY,Song, M,Yu, ZL. 2005

[14]Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ye, Xinxin,Zhang, Ligan,Chai, Rushan,Tu, Renfeng,Gao, Hongjian,Li, Hongying,Zhang, Ligan. 2018

[15]Diagnosis of Nitrogen Nutrition of Rice Based on Image Processing of Visible Light. Yuan, Yuan,Chen, Lei,Li, Miao,Wu, Na,Wan, Li,Wang, Shimei. 2016

[16]Effect of the absence of lipoxygenase isoenzymes on the storage characteristics of rice grains. Zhang, Ying,Yu, Zengliang,Lu, Yixuan,Wang, Yu,She, Dehong,Song, Mei,Wu, Yuejin. 2007

[17]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[18]Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice. Xiang, Chao,Zhang, Hongjun,Wei, Shaobo,Fu, Binying,Gao, Yongming,Wang, Hui,Xia, Jiafa,Li, Zefu,Ye, Guoyou. 2016

[19]An optimal parametric proportional hazards model for mapping heading time loci in rice. Luo, Zhixiang,Piao, Zhongze,Zhou, Xiaojing,Yang, Tianfu,Yang, Runqing,Yang, Runqing. 2013

[20]Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Luo, Yanchang,Yin, Zhongchao,Zakaria, Sabaruddin,Basyah, Bakhtiar,Luo, Yanchang,Ma, Tingchen,Li, Zefu,Yang, Jianbo,Yin, Zhongchao. 2014

作者其他论文 更多>>