您好,欢迎访问安徽省农业科学院 机构知识库!

Comparison of amylopectin structure and activities of key starch synthesis enzymes in the grains of rice single-segment substitution lines with different Wx alleles

文献类型: 外文期刊

作者: Teng, Bin 1 ; Zhang, Chen 2 ; Zhang, Ying 1 ; Wu, Jingde 1 ; Li, Zefu 1 ; Luo, Zhixiang 1 ; Yang, Jianbo 1 ;

作者机构: 1.Anhui Acad Agr Sci, Inst Rice Res, Anhui Prov Key Lab Rice Genet & Breeding, Hefei 230031, Peoples R China

2.Anhui Agr Univ, Coll Life Sci, Hefei 230061, Peoples R China

关键词: Rice;Wx gene;Allelic variation;Amylopectin structure;Starch synthesis enzyme;Single-segment substitution line

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The Wx gene is the major gene controlling amylose synthesis in rice endosperm. So far, the Wx gene can be mainly classified into five common alleles, wx, Wx (t), Wx (g1), Wx (g2), and Wx (g3), according to their amylose phenotypes. Besides, the Wx allelic variation was also found to play an important role in regulating other physicochemical properties of rice starch. However, the specific physiological and starch structural mechanisms are not clear yet. With a set of single-segment substitution lines harboring five different Wx alleles, the genotype differences in amylopectin structure and dynamic changes of activities of key starch synthesis enzymes were investigated. The distinct Wx genotype difference in chain length distribution of amylopectin was confirmed by size exclusion chromatography. There were clear allelic differences in activities of starch synthesis enzymes during grain filling. The Wx allelic variation had the highest impact on the activities of starch branching enzyme, followed by pullulanase, and soluble starch synthase, while no influence on isoamylase activity. Differences in structural features of amylopectin and mean enzyme activities during grain filling period correlated well with most of the variations in starch property traits. These findings indicate that the Wx allelic variation may affect starch structure and physicochemical properties through selectively influencing activities of starch synthesis enzymes in developing rice grains. The present results will contribute to our understanding of the regulation of starch biosynthesis in rice endosperm.

  • 相关文献

[1]Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Teng, Bin,Zeng, Ruizhen,Wang, Yicun,Liu, Ziqiang,Zhang, Zemin,Zhu, Haitao,Ding, Xiaohua,Li, Wentao,Zhang, Guiquan,Teng, Bin,Zeng, Ruizhen,Liu, Ziqiang,Zhang, Zemin,Zhang, Guiquan. 2012

[2]Association between allelic variation at the Waxy locus and starch physicochemical properties using single-segment substitution lines in rice (Oryza sativa L.). Teng, Bin,Zhang, Ying,Wu, Jingde,Cong, Xihan,Luo, Zhixiang,Wang, Ruiyun,Han, Yuanhuai.

[3]Crystalline, thermal and swelling properties of starches from single-segment substitution lines with different Wx alleles in rice (Oryza sativa L.). Teng, Bin,Zhang, Ying,Du, Shiyun,Wu, Jingde,Li, Zefu,Luo, Zhixiang,Yang, Jianbo.

[4]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[5]A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Zeng, Xiuyu,Tang, Ran,Guo, Herong,Ke, Shanwen,Xu, Zhenjiang,Xie, Xin-Ming,Zhang, Xiang-Qian,Teng, Bin,Hung, Yu-Hung,Hsieh, Tzung-Fu,Hung, Yu-Hung,Hsieh, Tzung-Fu.

[6]Biofortification of rice grain with zinc through zinc fertilization in different countries. Yazici, A.,Cakmak, I.,Phattarakul, N.,Rerkasem, B.,Li, L. J.,Wu, L. H.,Zou, C. Q.,Zhang, F. S.,Ram, H.,Sohu, V. S.,Kang, B. S.,Surek, H.,Kalayci, M..

[7]Comparison of physicochemical characteristics between white-belly and white-core rice grains. Xi, Min,Zhao, Yanling,Lin, Zhaomiao,Zhang, Xincheng,Ding, Chengqiang,Tang, She,Liu, Zhenghui,Wang, Shaohua,Ding, Yanfeng,Xi, Min,Liu, Zhenghui,Ding, Yanfeng.

[8]Mutation of rice (Oryza sativa L.) LOX-1/2 near-isogenic lines with ion beam implantation and study of their storability. Song, Mei,Wu, Yuejin,Liu, B. M.,Jiang, J. Y.,Xu, X.,Yu, Z. L.,Zhang, Ying.

[9]Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Li, ZF,Wan, JM,Xia, JF,Yano, M.

[10]Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Luo, Yanchang,Ong, Kar Hui,Yin, Zhongchao,Luo, Yanchang,Ma, Tingchen,Luo, Zhixiang,Li, Zefu,Yang, Jianbo,Zhang, Aifang,Yin, Zhongchao.

[11]Generation of targeted mutant rice using a CRISPR-Cpf1 system. Xu, Rongfang,Qin, Ruiying,Li, Hao,Li, Dongdong,Li, Li,Wei, Pengcheng,Yang, Jianbo.

[12]Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Duan, Yong-Bo,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Li, Hao,Yang, Ya-Chun,Ma, Hui,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo,Duan, Yong-Bo.

[13]The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Li, Hongying,Ye, Xinxin,Geng, Zhigang,Zhou, Hongjian,Zhang, Yunxia,Zhao, Huijun,Wang, Guozhong,Li, Hongying,Guo, Xisheng,Zhao, Huijun.

[14]Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). Ni, Da-Hu,Duan, Yong-Bo,Yang, Ya-Chun,Wei, Peng-Cheng,Li, Hao,Song, Feng-Shun,Ni, Jin-Long,Yang, Jian-Bo,Li, Juan,Duan, Yong-Bo,Wei, Peng-Cheng,Li, Hao,Xu, Rong-Fang,Li, Chun-Rong,Liang, Dan-Dan. 2014

[15]Study on the variation of the distant crossing rice by ion beam implantation. Wu, YJ,Zhang, Y,Wu, JD,Tong, JP,Li, H,Zheng, LY,Song, M,Yu, ZL. 2005

[16]Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ye, Xinxin,Zhang, Ligan,Chai, Rushan,Tu, Renfeng,Gao, Hongjian,Li, Hongying,Zhang, Ligan. 2018

[17]Diagnosis of Nitrogen Nutrition of Rice Based on Image Processing of Visible Light. Yuan, Yuan,Chen, Lei,Li, Miao,Wu, Na,Wan, Li,Wang, Shimei. 2016

[18]Effect of the absence of lipoxygenase isoenzymes on the storage characteristics of rice grains. Zhang, Ying,Yu, Zengliang,Lu, Yixuan,Wang, Yu,She, Dehong,Song, Mei,Wu, Yuejin. 2007

[19]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[20]Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice. Xiang, Chao,Zhang, Hongjun,Wei, Shaobo,Fu, Binying,Gao, Yongming,Wang, Hui,Xia, Jiafa,Li, Zefu,Ye, Guoyou. 2016

作者其他论文 更多>>