您好,欢迎访问安徽省农业科学院 机构知识库!

Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.)

文献类型: 外文期刊

作者: Ni, Da-Hu 1 ; Li, Juan 2 ; Duan, Yong-Bo 1 ; Yang, Ya-Chun 1 ; Wei, Peng-Cheng 1 ; Xu, Rong-Fang 5 ; Li, Chun-Rong 5 ; Li 1 ;

作者机构: 1.Anhui Acad Agr Sci, Rice Res Inst, Hefei 230031, Peoples R China

2.Chinese Acad Sci, Inst Tech Biol & Agr Engn, Key Lab Ion Beam Bioengn, Hefei 230031, Peoples R China

3.Huaibei Normal Univ, Coll Life Sci, Key Lab Resource Plant Biol Anhui Prov, Huaibei 235000, Peoples R China

4.Anhui Acad Agr Sci, Inst Agr Engn, Hefei 230031, Peoples R China

5.Anhui Agr Univ, Coll Life Sci, Hefei 230031, Anhui, Peoples R China

6.Anhui Agr Univ,

关键词: Genetically modified crops;cleistogamy;gene flow;map-based clone;pedigree selection;rice

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN: 0022-0957

年卷期: 2014 年 65 卷 8 期

页码:

收录情况: SCI

摘要: Mutation of the gene cl7(t), a novel allele of dep2, increases the force required to open the lemma and palea, and results in weak swelling ability in the lodicules, leading to cleistogamy.Gene transformation is an important method for improvement of plants into elite varieties. However, the possibility of gene flow between genetically modified (GM) crops and similar species is a serious public issue that may potentially endanger ecological stability. Cleistogamy is expected to be an ideal genetic tool for preventing transgene propagation from GM crops. A rice mutant, cl7(t), was created by ethyl methanesulfonate mutagenesis. The mutant exhibited cleistogamy, and had closed spikelets, reduced plant height, and altered morphology of the leaves, panicle, and seeds. Anatomical investigations revealed that the cl7(t) mutant contained more vascular bundles and thicker stems than the wild type, which increased the mechanical strength of its internodes, and anti-lodging ability. Further studies demonstrated that the force required to open the lemma and palea was higher in the cl7(t) mutant, and there was weak swelling ability in the lodicules, which leads to cleistogamy. Allelic analyses and complementation tests indicated that cl7(t) was a novel allele of dep2, a mutant that was previously reported to have similar panicle morphology. Sequence analysis showed that cl7(t) had a single nucleotide substitution (C to A) in the third exon that leads to a Ser substitution with a stop codon, giving a truncated DEP2 protein. Quantitative RT-PCR and in situ hybridization tests demonstrated that there was lower CL7(t) expression level in the spikelets and weaker CL7(t) signals in the lodicules of the cl7(t) mutant compared with wild type, which implies that CL7(t) might participate in the development of lodicules. To improve the agronomic traits of cl7(t) to fit the needs of field production, the cl7(t) mutant was crossed with an intermediate-type rice variety named Guanghui102, which bears some important agronomic traits, including increased grain numbers and high rate of seed setting. Through multi-generational pedigree selection, cleistogamy lines with improved economic traits were obtained, which can be used for the selection of ecologically safe GM rice varieties.

  • 相关文献

[1]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[2]A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Zeng, Xiuyu,Tang, Ran,Guo, Herong,Ke, Shanwen,Xu, Zhenjiang,Xie, Xin-Ming,Zhang, Xiang-Qian,Teng, Bin,Hung, Yu-Hung,Hsieh, Tzung-Fu,Hung, Yu-Hung,Hsieh, Tzung-Fu.

[3]Biofortification of rice grain with zinc through zinc fertilization in different countries. Yazici, A.,Cakmak, I.,Phattarakul, N.,Rerkasem, B.,Li, L. J.,Wu, L. H.,Zou, C. Q.,Zhang, F. S.,Ram, H.,Sohu, V. S.,Kang, B. S.,Surek, H.,Kalayci, M..

[4]Comparison of physicochemical characteristics between white-belly and white-core rice grains. Xi, Min,Zhao, Yanling,Lin, Zhaomiao,Zhang, Xincheng,Ding, Chengqiang,Tang, She,Liu, Zhenghui,Wang, Shaohua,Ding, Yanfeng,Xi, Min,Liu, Zhenghui,Ding, Yanfeng.

[5]Mutation of rice (Oryza sativa L.) LOX-1/2 near-isogenic lines with ion beam implantation and study of their storability. Song, Mei,Wu, Yuejin,Liu, B. M.,Jiang, J. Y.,Xu, X.,Yu, Z. L.,Zhang, Ying.

[6]Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Li, ZF,Wan, JM,Xia, JF,Yano, M.

[7]Generation of targeted mutant rice using a CRISPR-Cpf1 system. Xu, Rongfang,Qin, Ruiying,Li, Hao,Li, Dongdong,Li, Li,Wei, Pengcheng,Yang, Jianbo.

[8]Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Duan, Yong-Bo,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Li, Hao,Yang, Ya-Chun,Ma, Hui,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo,Duan, Yong-Bo.

[9]The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Li, Hongying,Ye, Xinxin,Geng, Zhigang,Zhou, Hongjian,Zhang, Yunxia,Zhao, Huijun,Wang, Guozhong,Li, Hongying,Guo, Xisheng,Zhao, Huijun.

[10]Study on the variation of the distant crossing rice by ion beam implantation. Wu, YJ,Zhang, Y,Wu, JD,Tong, JP,Li, H,Zheng, LY,Song, M,Yu, ZL. 2005

[11]Diagnosis of Nitrogen Nutrition of Rice Based on Image Processing of Visible Light. Yuan, Yuan,Chen, Lei,Li, Miao,Wu, Na,Wan, Li,Wang, Shimei. 2016

[12]Effect of the absence of lipoxygenase isoenzymes on the storage characteristics of rice grains. Zhang, Ying,Yu, Zengliang,Lu, Yixuan,Wang, Yu,She, Dehong,Song, Mei,Wu, Yuejin. 2007

[13]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[14]An optimal parametric proportional hazards model for mapping heading time loci in rice. Luo, Zhixiang,Piao, Zhongze,Zhou, Xiaojing,Yang, Tianfu,Yang, Runqing,Yang, Runqing. 2013

[15]Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L.. Li, C. R.,Liang, D. D.,Xu, R. F.,Li, L.,Li, C. R.,Liang, D. D.,Xu, R. F.,Li, H.,Zhang, Y. P.,Qin, R. Y.,Li, L.,Wei, P. C.,Yang, J. B.,Li, H.,Wei, P. C.. 2013

[16]Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Teng, Bin,Zeng, Ruizhen,Wang, Yicun,Liu, Ziqiang,Zhang, Zemin,Zhu, Haitao,Ding, Xiaohua,Li, Wentao,Zhang, Guiquan,Teng, Bin,Zeng, Ruizhen,Liu, Ziqiang,Zhang, Zemin,Zhang, Guiquan. 2012

[17]Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Xu, Rongfang,Li, Hao,Qin, Ruiying,Wang, Lu,Li, Li,Wei, Pengcheng,Yang, Jianbo,Li, Hao,Wei, Pengcheng,Xu, Rongfang,Li, Li. 2014

[18]Isolation and characterization of three cadmium-inducible promoters from Oryza sativa. Qiu, Chun-Hong,Li, Hao,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Yang, Ya-Chun,Ma, Hui,Song, Feng-Shun,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo.

[19]Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Zeng, Xuan,Tian, Dongsheng,Gu, Keyu,Zhou, Zhiyun,Yang, Xiaobei,Luo, Yanchang,Yin, Zhongchao,Zeng, Xuan,Yin, Zhongchao,Luo, Yanchang,White, Frank F.,Yin, Zhongchao.

[20]Isolation of four rice seed-specific promoters and evaluation of endosperm activity. Xu, Rongfang,Li, Dongdong,Yang, Yachun,Li, Li,Yang, Jianbo,Xu, Rongfang,Li, Dongdong,Li, Hao,Li, Juan,Yang, Yachun,Qin, Ruiying,Li, Li,Wei, Pengcheng,Yang, Jianbo.

作者其他论文 更多>>