iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice
文献类型: 外文期刊
作者: Xi, Min 1 ; Wu, Wenge 1 ; Xu, Youzun 1 ; Zhou, Yongjin 1 ; Chen, Gang 1 ; Ji, Yalan 1 ; Sun, Xueyuan 1 ;
作者机构: 1.Anhui Acad Agr Sci, Rice Res Inst, Hefei 230031, Anhui, Peoples R China
关键词: Rice (Oryza sativa L.); iTRAQ; Proteome; Grain chalkiness; Nitrogen fertilizer
期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )
ISSN: 0981-9428
年卷期: 2020 年 154 卷
页码:
收录情况: SCI
摘要: Grain chalkiness is a highly undesirable trait that adversely affects rice quality. This chalkiness is easily influenced by the application of chemical nitrogen (N) fertilizer at the late growth stage. However, on the molecular mechanism underlying grain chalkiness caused by late N fertilization is not fully clear. In this study, proteomic differences in expression were determined in developing grains exposed to N topdressing (108 kg N ha(-1), N+) and a control (0 kg N ha(-1), N0), using the rice variety OM052, which has a high level of chalkiness. A total of 198 differentially expressed proteins (DEPs) were detected between the N+ and N0 treatments, including 9 upregulated proteins and 189 down-regulated proteins. Of these DEPs, approximately half were associated with carbohydrate metabolism (glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, fermentation and starch metabolism) and N metabolism (protein synthesis, folding, degradation and storage, amino acid synthesis and catabolism). A detailed pathway dissection revealed that multiple metabolic pathways during the grain filling stage were involved in the N-induced grain chalkiness. Reduced abundances of proteins associated with respiratory metabolism and energy metabolism drastically impaired the biosynthesis and deposition of starch in the developmental endosperms, which might be a crucial trigger for the increase in grain chalkiness. The disturbed N metabolism and differential expression of storage proteins up-regulated during the grain filling stage are able to partially explain the occurrence of grain chalkiness in rice.
- 相关文献
作者其他论文 更多>>
-
Raised Bed Planting Pattern Improves Root Growth and Nitrogen use Efficiency of Post-Rice Wheat
作者:Du, Xiangbei;Jin, Wenjun;Chen, Xiaofei;Kong, Lingcong;Wu, Wenge;Xi, Min
关键词:Post-rice Wheat; Raised Bed Planting; Soil Physical Properties; Root Morphology; Nitrogen Use Efficiency
-
High sugarcane yield and large reduction in reactive nitrogen loss can be achieved by lowering nitrogen input
作者:Yang, Linsheng;Xi, Min;Wu, Wenge;Yang, Linsheng;Zhou, Yifang;Meng, Bo;Zhan, Jian;Deng, Yan;Lakshmanan, Prakash;Chen, Xinping;Lakshmanan, Prakash;Lakshmanan, Prakash;Zhang, Fusuo
关键词:N leaching; Ammonia loss; N2O emissions; N balance; Sugarcane
-
Energy use and carbon footprint in response to the transition from indica rice to japonica rice cropping systems in China
作者:Xi, Min;Xu, Youzun;Zhou, Yongjin;Tu, Debao;Li, Zhong;Sun, Xueyuan;Wu, Chenyang;Wu, Wenge
关键词:Rice cropping system; Energy use efficiency; Carbon footprint; Economic benefits
-
BIOMASS COMPOSTING COMBINED WITH A BIOLOGICAL NITRIFICATION INHIBITOR INFLUENCES GREENHOUSE GAS EMISSION AND MICROBIAL COMMUNITY IN RICE PADDY
作者:Mayassi, Clevie thertully balongana;Qiao, Cece;Wang, Yachun;Huang, Xingghen;Min, Hongzhi;Zou, Yuning;Ren, Lantian;Wu, Wenge;Hao, Bing;Wu, Wenge
关键词:Biomass composting; Greenhouse Gas Emission; Microbial community; Rice paddy
-
Carbon footprint research and mitigation strategies for rice-cropping systems in China: a review
作者:Ji, Yalan;Wu, Wenge;Zou, Huawen;Ji, Yalan;Zhou, Yongjin;Li, Zhong;Feng, Kaixuan;Sun, Xueyuan;Xu, Youzun;Wu, Wenge
关键词:rice-cropping system; carbon footprint; greenhouse gas emissions; emission reduction; China
-
Dual purpose ratooned rice improves agri-food production with reduced environmental cost
作者:Qi, Deqiang;Fu, Mingfang;Shi, Xiaofei;Zhang, Jing;Zhao, Quanzhi;Peng, Ting;Liu, Ke;Harrison, Matthew Tom;Liu, Xiangchen;de Voil, Peter;Zhang, Yunbo;Radanielson, Ando;Wu, Wenge;Chen, Jingrui;Jiang, Yu;Zhao, Quanzhi
关键词:Ratoon rice; Crop productivity; Energy use efficiency; Greenhouse gas emissions; Sustainability
-
Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity
作者:Du, Xiang-bei;Wei, Zhi;Chen, Xiao-fei;Kong, Ling-cong;Xi, Min;Wu, Wen-ge
关键词:grain number; floret development; photosynthetic capacity; wheat grown after rice