您好,欢迎访问安徽省农业科学院 机构知识库!

Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin

文献类型: 外文期刊

作者: Jiao, Xiaoyu 1 ; Li, Guoqing 1 ; Wang, Yan 1 ; Nie, Fan 2 ; Cheng, Xi 1 ; Abdullah, Muhammad 1 ; Lin, Yi 1 ; Cai, Yongpin 1 ;

作者机构: 1.Anhui Agr Univ, Sch Life Sci, 130 Changjiang West Rd, Hefei 230036, Anhui, Peoples R China

2.Anhui Acad Agr Sci, Inst Hort, Hefei 230031, Anhui, Peoples R China

关键词: Pleurotus ostreatus; laccase gene; phylogenetic analysis; expression profiling; overexpression; lignin degradation

期刊名称:MOLECULES ( 影响因子:4.411; 五年影响因子:4.587 )

ISSN: 1420-3049

年卷期: 2018 年 23 卷 4 期

页码:

收录情况: SCI

摘要: Fungal laccases play important roles in the degradation of lignocellulose. Although some PoLacs have been reported in several studies, still no comprehensive bioinformatics study of the LAC family in Pleurotus ostreatus has been reported. In this study, we identified 12 laccase genes in the whole genome sequence of P. ostreatus and their physical characteristics, gene distribution, phylogenic relationships, gene structure, conserved motifs, and cis-elements were also analyzed. The expression patterns of 12 PoLac genes at different developmental stages and under different culture substrates were also analyzed. The results revealed that PoLac2 and PoLac12 may be involved in the degradation of lignin and the formation of the fruiting body, respectively. Subsequently, we overexpressed PoLac2 in P. ostreatus by the Agrobacterium tumefaciens-mediated transformation (ATMT) method. The transformants' laccase activity increased in varying degrees, and the gene expression level of PoLac2 in transformants was 2-8 times higher than that of the wild-type strain. Furthermore, the lignin degradation rate by transgenic fungus over 30 days was 2.36-6.3% higher than that of wild-type. Our data show that overexpression of PoLac2 significantly enhanced the lignin degradation of cotton-straw. To our knowledge, this study is the first report to demonstrate the functions of PoLac2 in P. ostreatus.

  • 相关文献
作者其他论文 更多>>