您好,欢迎访问安徽省农业科学院 机构知识库!

Comparison of Gut Microbial Community between Bt-Resistant and Susceptible Strains of Ostrinia furnacalis

文献类型: 外文期刊

作者: Xu, Tingting 1 ; Wang, Yinhao 1 ; Wang, Yueqin 3 ; Bi, Sijia 1 ; Hu, Benjin 1 ; Hu, Fei 1 ; Xu, Lina 1 ;

作者机构: 1.Anhui Acad Agr Sci, Inst Plant Protect & Agroprod Safety, Hefei 230031, Peoples R China

2.Anhui Agr Univ, Sch Life Sci, Hefei 230036, Peoples R China

3.Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100081, Peoples R China

关键词: Bacillus thuringiensis; gut microbiota; Ostrinia furnacalis; Cry toxin

期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )

ISSN:

年卷期: 2023 年 13 卷 7 期

页码:

收录情况: SCI

摘要: Bacillus thuringiensis is an effective entomopathogen, and its crystal toxin expressed in transgenic crops has been widely used for pest control. However, insect resistance risk is the main threat to the continued successful utility of Bt crops. Several studies reported the role of midgut microbiota in Bt resistance, but the mechanism remains controversial. In the present study, using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we surveyed the midgut bacterial flora of Ostrinia furnacalis from one Bt-susceptible (ACB-BtS) and two Bt-resistant (ACB-AbR and ACB-FR) strains and explored the mortality of O. furnacalis after eliminating the gut bacteria. Gut bacterial diversity in Bt-resistant strains was significantly lower in Bt-resistant than in Bt-susceptible strains. Ordination analyses and statistical tests showed that the bacterial community of ACB-AbR was distinguishable from ACB-BtS. The genus Halomonas was dominated in ACB-BtS, but the unclassified_Enterobacteriaceae was the most enriched genus in ACB-AbR and ACB-FR. Furthermore, interactions of the bacterial community are more complex in Bt-resistant strains than in Bt-susceptible strains. Moreover, the mortalities of ACB-AbR and ACB-BtS strains treated by the Cry1Ab toxin were significantly reduced after eliminating the gut bacteria. Our findings suggest that Bt stressors structured in the midgut bacterial community and the microbiota have the potential to regulate the Bt-induced killing mechanism.

  • 相关文献
作者其他论文 更多>>