您好,欢迎访问安徽省农业科学院 机构知识库!

The patterns of genomic variances and covariances across genome for milk production traits between Chinese and Nordic Holstein populations

文献类型: 外文期刊

作者: Li, Xiujin 1 ; Lund, Mogens Sando 1 ; Janss, Luc 1 ; Wang, Chonglong 4 ; Ding, Xiangdong 2 ; Zhang, Qin 2 ; Su, Guoshe 1 ;

作者机构: 1.Aarhus Univ, Dept Mol Biol & Genet, Ctr Quantitat Genet & Genom, Tjele, Denmark

2.China Agr Univ, Lab Anim Genet Breeding & Reprod, Minist Agr China, Natl Engn Lab Anim Breeding,Coll Anim Sci & Techn, Beijing 100193, Peoples R China

3.Sun Yat Sen Univ, State Key Lab Biocontrol, Sch Life Sci, Guangzhou Higher Educ Mega Ctr, North Third Rd, Guangzhou 510006, Guangdong, Peoples R China

4.Anhui Acad Agr Sci, Inst Anim Husb & Vet Med, Dept Pig Genet & Breeding, Hefei 230031, Peopl

关键词: Chinese Holstein;Nordic Holstein;Genomic variance;Genomic covariance;Genomic correlation

期刊名称:BMC GENETICS ( 影响因子:2.797; 五年影响因子:3.263 )

ISSN: 1471-2156

年卷期: 2017 年 18 卷

页码:

收录情况: SCI

摘要: Background: With the development of SNP chips, SNP information provides an efficient approach to further disentangle different patterns of genomic variances and covariances across the genome for traits of interest. Due to the interaction between genotype and environment as well as possible differences in genetic background, it is reasonable to treat the performances of a biological trait in different populations as different but genetic correlated traits. In the present study, we performed an investigation on the patterns of region-specific genomic variances, covariances and correlations between Chinese and Nordic Holstein populations for three milk production traits. Results: Variances and covariances between Chinese and Nordic Holstein populations were estimated for genomic regions at three different levels of genome region (all SNP as one region, each chromosome as one region and every 100 SNP as one region) using a novel multi-trait random regression model which uses latent variables to model heterogeneous variance and covariance. In the scenario of the whole genome as one region, the genomic variances, covariances and correlations obtained from the new multi-trait Bayesian method were comparable to those obtained from a multi-trait GBLUP for all the three milk production traits. In the scenario of each chromosome as one region, BTA 14 and BTA 5 accounted for very large genomic variance, covariance and correlation for milk yield and fat yield, whereas no specific chromosome showed very large genomic variance, covariance and correlation for protein yield. In the scenario of every 100 SNP as one region, most regions explained <0.50% of genomic variance and covariance for milk yield and fat yield, and explained <0.30% for protein yield, while some regions could present large variance and covariance. Although overall correlations between two populations for the three traits were positive and high, a few regions still showed weakly positive or highly negative genomic correlations for milk yield and fat yield. Conclusions: The new multi-trait Bayesian method using latent variables to model heterogeneous variance and covariance could work well for estimating the genomic variances and covariances for all genome regions simultaneously. Those estimated genomic parameters could be useful to improve the genomic prediction accuracy for Chinese and Nordic Holstein populations using a joint reference data in the future.

  • 相关文献
作者其他论文 更多>>