Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management
文献类型: 外文期刊
作者: An, Ning 1 ; Fan, Mingsheng 1 ; Zhang, Fusuo 1 ; Christie, Peter 1 ; Yang, Jianchang 2 ; Huang, Jianliang 3 ; Guo, Shi 1 ;
作者机构: 1.China Agr Univ, Ctr Resources Environm & Food Secur, Coll Resources & Environm Sci, Beijing 100094, Peoples R China
2.Yangzhou Univ, Key Lab Crop Genet & Physiol Jiangsu Prov, Yangzhou 225009, Jiangsu, Peoples R China
3.Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Peoples R China
4.Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing, Jiangsu, Peoples R China
5.Southwest Univ, Resource & Environm Coll, Chongqing, Peoples R China
6.Hunan Agr Univ, Crop Physiol Ecol & Prod Ctr, Changsha, Hunan, Peoples R China
7.Hunan Agr Univ, Crop Physiol Ecol &
期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )
ISSN: 1932-6203
年卷期: 2015 年 10 卷 10 期
页码:
收录情况: SCI
摘要: Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale.
- 相关文献
作者其他论文 更多>>
-
Productivity of saline soils can be improved by integrating soil-crop system management
作者:Miao, Qi;Wu, Gang;Sun, Yixiang;Wu, Shuaibing;Li, Junchao;Ying, Hao;Cui, Zhenling;Zhang, Jishi;Wang, Yunhong
关键词:Saline soil; Improved soil; Crop management; Spring maize; Soil-crop interaction
-
Environmental trade-offs and productivity gains through sustainable nitrogen use in an intensive high-input sugarcane production system in China
作者:Yang, Linsheng;Yang, Linsheng;Zhou, Yifang;Meng, Bo;Wang, Huayang;Lakshmanan, Prakash;Deng, Yan;Chen, Xinping;Zhou, Yifang;Liu, Xiaoyan;Lakshmanan, Prakash;Luo, Ting;Lakshmanan, Prakash;Zhang, Fusuo
关键词:Sugarcane; Nitrogen management; Yield; Reactive nitrogen loss
-
Strategies to reduce CH4 and N2O emissions whilst maintaining crop yield in rice-wheat system under climate change using SPACSYS model
作者:Wang, Shuhui;Sun, Nan;Zhang, Shuxiang;Xu, Minggang;Wang, Shuhui;Wellens, Joost;Longdoz, Bernard;Meersmans, Jeroen;Colinet, Gilles;Mu, Zhijian;Wang, Fa;Shi, Xiaojun;Liu, Chuang;Xu, Minggang;Wu, Lianhai;Wu, Lianhai
关键词:Climate change; Crop yield; SOC; GHG; Mitigation; SPACSYS
-
Blended controlled-release nitrogen fertilizer increases rice post-anthesis nitrogen accumulation, translocation and nitrogen-use efficiency
作者:Yuan, Manman;Wu, Gang;Wang, Jiabao;Liu, Chuang;Zhang, Xiangming;Wang, Wenjun;Sun, Yixiang;Hu, Yegong;Hu, Run;Zhou, Yan
关键词:economic return; yield; nitrogen translocation; post-anthesis nitrogen uptake; urea N type
-
Environmental impact and mitigation potentials in Greenhouse tomatoes production system in Yangtze River Delta
作者:Wu, Gang;Yuan, Manman;Wang, Jiabao;Sun, Yixiang;Zhao, Mingjiong;Wang, Xingbang;Chen, Xinping;Wang, Xiaozhong;Liu, Bin
关键词:Environmental impact; Mitigation potentials; Yield; Greenhouse tomatoes; Yangtze River Delta
-
High sugarcane yield and large reduction in reactive nitrogen loss can be achieved by lowering nitrogen input
作者:Yang, Linsheng;Xi, Min;Wu, Wenge;Yang, Linsheng;Zhou, Yifang;Meng, Bo;Zhan, Jian;Deng, Yan;Lakshmanan, Prakash;Chen, Xinping;Lakshmanan, Prakash;Lakshmanan, Prakash;Zhang, Fusuo
关键词:N leaching; Ammonia loss; N2O emissions; N balance; Sugarcane
-
Optimizing fertilization strategies for a climate-resilient rice - wheat double cropping system
作者:Liu, Chuang;Sun, Zhili;Wang, Xiao;Wu, Gang;Yuan, Manman;Wang, Jiabao;Sun, Yixiang;Liu, Chuang;Wu, Lianhai;Liu, Chuang;Liu, Yi
关键词:Water-soluble nitrogen losses; N2O Emissions; Climate change; Crop Productivity; Nitrogen Management; SPACSYS



