您好,欢迎访问安徽省农业科学院 机构知识库!

Effects of Different Organic Manures on the Biochemical and Microbial Characteristics of Albic Paddy Soil in a Short-Term Experiment

文献类型: 外文期刊

作者: Zhang, Qian 1 ; Zhou, Wei 1 ; Liang, Guoqing 1 ; Wang, Xiubin 1 ; Sun, Jingwen 1 ; He, Ping 1 ; Li, Lujiu 2 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Minist Agr, Key Lab Plant Nutr & Fertilizat, Beijing 100193, Peoples R China

2.Anhui Acad Agr Sci, Inst Soil & Fertilizer, Hefei, Peoples R China

期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )

ISSN: 1932-6203

年卷期: 2015 年 10 卷 4 期

页码:

收录情况: SCI

摘要: This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, beta-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, beta-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on beta-xylosidase, beta-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile.

  • 相关文献
作者其他论文 更多>>