您好,欢迎访问安徽省农业科学院 机构知识库!

Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice

文献类型: 外文期刊

作者: Piao, Zhongze 2 ; Li, Maobai 2 ; Li, Peide 3 ; Zhang, Jianming 2 ; Zhu, Chunmei 4 ; Wang, Hui 2 ; Luo, Zhixiang 5 ; Lee, 1 ;

作者机构: 1.Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China

2.Shanghai Acad Agr Sci, Crop Breeding & Cultivat Res Inst, Shanghai 201106, Peoples R China

3.Hubei Acad Agr Sci, Wuhan 430064, Peoples R China

4.Haifeng Farm Shanghai, Dafeng 224100, Jiangsu, Peoples R China

5.Anhui Acad Agr Sci, Rice Res Inst, Hefei 230031, Peoples R China

6.Natl Inst Agr Biotechnol Rural Dev Adm, Suwon 441707, South Korea

关键词: Rice;nitrogen utilization efficiency;QTL;epistatic;interaction of QTL x nitrogen level

期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )

ISSN: 1684-5315

年卷期: 2009 年 8 卷 24 期

页码:

收录情况: SCI

摘要: Nitrogen is one of the key important nutrients in rice production. High rice grain yield is greatly dependent upon economic nitrogen input and genetic factors. In order to locate quantitative loci for traits associated with nitrogen utilization efficiency in rice, F9 recombinant inbred lines derived from a Korean tongil type Dasanbyeo and a Chinese japonica variety TR22183 was genetically designed. The six traits of interest were observed on 155 RILs, along with 105 SSR and 103 STS markers. Bayesian model selection technique was used to dissect genetic architecture for traits of interest. A total of 28 main-effect QTLs and 23 pairs of epistatic QTLs were detected for traits associated with nitrogen utilization efficiency. The proportions of phenotypic variation explained by the detected QTLs ranged from 0.09 to 16.90% and from 0.19 to 12.76% for main-effect and epistatic QTLs, respectively. Sixteen of main-effect QTLs interacted with nitrogen level. One pleiotropic QTL was found, governing simultaneously nitrogen dry matter production efficiency and Nitrogen grain production efficiency.

  • 相关文献

[1]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[2]Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). Fu, Qiang,Tan, Lubin,Zhu, Zuofeng,Ma, Dan,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Fu, Qiang,Zhang, Peijiang,Zhan, Xinchun. 2010

[3]水稻叶片相对含水量性状的QTL定位分析(英文). 王士梅,沈国霞,陈秀晨,朱启升,王海娟. 2014

[4]花生百果质量和百仁质量性状的QTL定位分析. 崔凤高,胡晓辉,苗华荣,张胜忠,王娟,王嵩,侯刚,隋洁,张建成,陈静. 2021

[5]标记辅助选择在畜禽育种中的应用. 吴义景,吴娟,周芬. 2003

[6]水稻'越光'品种的"前世今生". 王伍梅,王辉,张效忠,杜士云. 2021

[7]水稻粒型与垩白性状相关分析和QTL定位. 崔磊,韩雷锋,王晨,林翠香,甘泉,倪大虎,吴德祥,宋丰顺. 2023

[8]云南元江普通野生稻株高和抽穗期QTL定位研究. 谭禄宾,张培江,付永彩,刘凤霞,王象坤,孙传清. 2004

[9]大豆重组自交系群体NJRIKY遗传图谱的加密及其应用效果. 周斌,邢邯,陈受宜,盖钧镒. 2010

[10]不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 张秀英,伍玲,王瑞,海林,游光霞,闫长生,肖世和. 2009

[11]水稻超高产育种若干问题的评述与讨论. 童继平,吴跃进,郑乐娅,吴敬德. 2003

[12]A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. Zeng, Xiuyu,Tang, Ran,Guo, Herong,Ke, Shanwen,Xu, Zhenjiang,Xie, Xin-Ming,Zhang, Xiang-Qian,Teng, Bin,Hung, Yu-Hung,Hsieh, Tzung-Fu,Hung, Yu-Hung,Hsieh, Tzung-Fu.

[13]Biofortification of rice grain with zinc through zinc fertilization in different countries. Yazici, A.,Cakmak, I.,Phattarakul, N.,Rerkasem, B.,Li, L. J.,Wu, L. H.,Zou, C. Q.,Zhang, F. S.,Ram, H.,Sohu, V. S.,Kang, B. S.,Surek, H.,Kalayci, M..

[14]Comparison of physicochemical characteristics between white-belly and white-core rice grains. Xi, Min,Zhao, Yanling,Lin, Zhaomiao,Zhang, Xincheng,Ding, Chengqiang,Tang, She,Liu, Zhenghui,Wang, Shaohua,Ding, Yanfeng,Xi, Min,Liu, Zhenghui,Ding, Yanfeng.

[15]Mutation of rice (Oryza sativa L.) LOX-1/2 near-isogenic lines with ion beam implantation and study of their storability. Song, Mei,Wu, Yuejin,Liu, B. M.,Jiang, J. Y.,Xu, X.,Yu, Z. L.,Zhang, Ying.

[16]Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Li, ZF,Wan, JM,Xia, JF,Yano, M.

[17]Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Luo, Yanchang,Ong, Kar Hui,Yin, Zhongchao,Luo, Yanchang,Ma, Tingchen,Luo, Zhixiang,Li, Zefu,Yang, Jianbo,Zhang, Aifang,Yin, Zhongchao.

[18]Generation of targeted mutant rice using a CRISPR-Cpf1 system. Xu, Rongfang,Qin, Ruiying,Li, Hao,Li, Dongdong,Li, Li,Wei, Pengcheng,Yang, Jianbo.

[19]Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Duan, Yong-Bo,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Li, Hao,Yang, Ya-Chun,Ma, Hui,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo,Duan, Yong-Bo.

[20]The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Li, Hongying,Ye, Xinxin,Geng, Zhigang,Zhou, Hongjian,Zhang, Yunxia,Zhao, Huijun,Wang, Guozhong,Li, Hongying,Guo, Xisheng,Zhao, Huijun.

作者其他论文 更多>>