您好,欢迎访问安徽省农业科学院 机构知识库!

Biofortification of rice grain with zinc through zinc fertilization in different countries

文献类型: 外文期刊

作者: Phattarakul, N. 2 ; Rerkasem, B. 2 ; Li, L. J. 3 ; Wu, L. H. 4 ; Zou, C. Q. 5 ; Ram, H. 6 ; Sohu, V. S. 6 ; Kang, B. S. 6 ;

作者机构: 1.Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey

2.Chiang Mai Univ, Plant Genet Resource & Nutr Lab, Chiang Mai 50000, Thailand

3.Anhui Acad Agr Sci, Soil & Fertilizer Inst, Hefei 230031, Peoples R China

4.Zhejiang Univ, Coll Environm & Resource Sci, Zhejiang Prov Key Lab Subtrop Soil & Plant Nutr, Hangzhou 310029, Zhejiang, Peoples R China

5.China Agr Univ, Ctr Resources Environm & Food Secur, Key Lab Plant Soil Interact, MOE, Beijing 100193, Peoples R China

6.Punjab Agr Univ, Ludhiana 141004, Punjab, India

7.Trakya Agr Res Inst, TR-22100 Edirne, Turkey

8.Transit Zone Agr Res Inst, TR-26002 Eskisehir, Turkey

关键词: Biofortification;Foliar spray;Rice;Zinc deficiency

期刊名称:PLANT AND SOIL ( 影响因子:4.192; 五年影响因子:4.712 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Background: Increasing zinc (Zn) concentration of rice seed has potential benefits for human nutrition and health. Enhanced levels of Zn in grain also contributes greatly to crop production through better germination and seedling vigor of rice plants grown on soils with limited Zn supply. Aims and methods: This study evaluated the effect of soil and/or foliar Zn fertilizer application on grain yield and grain Zn concentration of rice grown in 17 field trials conducted in 2008 to 2010 in China, India, Lao PDR, Thailand and Turkey on soils ranging in pH from 4.8 to 8.8 and DTPA- extractable Zn from 0.5 to 6.5 mg kg-1. Results: Zinc fertilization had little effect on rice grain yield with the exception of increases of up to 10% in some locations in China and India. As an average of all trials, Zn application increased grain yield by about 5%. Grain Zn concentrations were, however, more effectively increased by Zn fertilization, especially with foliar Zn applications. On average, Zn concentration in brown rice (whole caryopsis with husk removed) was increased by 25% and 32% by foliar and foliar + soil Zn applications, respectively, and only 2.4% by soil Zn application. The Zn concentration of un-husked rice (whole grain with husk), which was increased by 66% by foliar Zn, showed a close association with the Zn in brown and white rice, indicating a possible penetration of Zn from the husk into the inner layers of the rice endosperm. Increase in grain Zn concentration by foliar Zn spray was significantly affected by the timing of the foliar application. More distinct increases in grain Zn by foliar Zn application were achieved when Zn was applied after flowering time, e.g., at early milk plus dough stages. Conclusions: Foliar Zn spray offers a practical and useful means for an effective biofortification of rice grain with Zn. This practice consistently and significantly contributed to increases in grain Zn of rice irrespective of cultivars, environmental conditions and management practices in 5 different countries.

  • 相关文献

[1]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[2]Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). Ni, Da-Hu,Duan, Yong-Bo,Yang, Ya-Chun,Wei, Peng-Cheng,Li, Hao,Song, Feng-Shun,Ni, Jin-Long,Yang, Jian-Bo,Li, Juan,Duan, Yong-Bo,Wei, Peng-Cheng,Li, Hao,Xu, Rong-Fang,Li, Chun-Rong,Liang, Dan-Dan. 2014

[3]Effect of the absence of lipoxygenase isoenzymes on the storage characteristics of rice grains. Zhang, Ying,Yu, Zengliang,Lu, Yixuan,Wang, Yu,She, Dehong,Song, Mei,Wu, Yuejin. 2007

[4]Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ye, Xinxin,Zhang, Ligan,Chai, Rushan,Tu, Renfeng,Gao, Hongjian,Li, Hongying,Zhang, Ligan. 2018

[5]Role of embryo lipoxygenase-3 under herbivore stress in stored rice. Zhou, Benguo,Tang, Qingfeng. 2012

[6]Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Luo, Yanchang,Yin, Zhongchao,Zakaria, Sabaruddin,Basyah, Bakhtiar,Luo, Yanchang,Ma, Tingchen,Li, Zefu,Yang, Jianbo,Yin, Zhongchao. 2014

[7]Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L.. Li, C. R.,Liang, D. D.,Xu, R. F.,Li, L.,Li, C. R.,Liang, D. D.,Xu, R. F.,Li, H.,Zhang, Y. P.,Qin, R. Y.,Li, L.,Wei, P. C.,Yang, J. B.,Li, H.,Wei, P. C.. 2013

[8]Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Xu, Rongfang,Li, Hao,Qin, Ruiying,Wang, Lu,Li, Li,Wei, Pengcheng,Yang, Jianbo,Li, Hao,Wei, Pengcheng,Xu, Rongfang,Li, Li. 2014

[9]Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice. Xiang, Chao,Zhang, Hongjun,Wei, Shaobo,Fu, Binying,Gao, Yongming,Wang, Hui,Xia, Jiafa,Li, Zefu,Ye, Guoyou. 2016

[10]Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Teng, Bin,Zeng, Ruizhen,Wang, Yicun,Liu, Ziqiang,Zhang, Zemin,Zhu, Haitao,Ding, Xiaohua,Li, Wentao,Zhang, Guiquan,Teng, Bin,Zeng, Ruizhen,Liu, Ziqiang,Zhang, Zemin,Zhang, Guiquan. 2012

[11]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[12]An optimal parametric proportional hazards model for mapping heading time loci in rice. Luo, Zhixiang,Piao, Zhongze,Zhou, Xiaojing,Yang, Tianfu,Yang, Runqing,Yang, Runqing. 2013

[13]Comparison of amylopectin structure and activities of key starch synthesis enzymes in the grains of rice single-segment substitution lines with different Wx alleles. Teng, Bin,Zhang, Ying,Wu, Jingde,Li, Zefu,Luo, Zhixiang,Yang, Jianbo,Zhang, Chen.

[14]Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Luo, Yanchang,Ong, Kar Hui,Yin, Zhongchao,Luo, Yanchang,Ma, Tingchen,Luo, Zhixiang,Li, Zefu,Yang, Jianbo,Zhang, Aifang,Yin, Zhongchao.

[15]Study on the variation of the distant crossing rice by ion beam implantation. Wu, YJ,Zhang, Y,Wu, JD,Tong, JP,Li, H,Zheng, LY,Song, M,Yu, ZL. 2005

[16]Diagnosis of Nitrogen Nutrition of Rice Based on Image Processing of Visible Light. Yuan, Yuan,Chen, Lei,Li, Miao,Wu, Na,Wan, Li,Wang, Shimei. 2016

[17]The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Li, Hongying,Ye, Xinxin,Geng, Zhigang,Zhou, Hongjian,Zhang, Yunxia,Zhao, Huijun,Wang, Guozhong,Li, Hongying,Guo, Xisheng,Zhao, Huijun.

[18]Isolation and characterization of three cadmium-inducible promoters from Oryza sativa. Qiu, Chun-Hong,Li, Hao,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Yang, Ya-Chun,Ma, Hui,Song, Feng-Shun,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo.

[19]Generation of targeted mutant rice using a CRISPR-Cpf1 system. Xu, Rongfang,Qin, Ruiying,Li, Hao,Li, Dongdong,Li, Li,Wei, Pengcheng,Yang, Jianbo.

[20]Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Zeng, Xuan,Tian, Dongsheng,Gu, Keyu,Zhou, Zhiyun,Yang, Xiaobei,Luo, Yanchang,Yin, Zhongchao,Zeng, Xuan,Yin, Zhongchao,Luo, Yanchang,White, Frank F.,Yin, Zhongchao.

作者其他论文 更多>>