Arbuscular Mycorrhizal Fungus Alters Root System Architecture in Camellia sinensis L. as Revealed by RNA-Seq Analysis
文献类型: 外文期刊
作者: Chen, Weili 1 ; Ye, Tao 1 ; Sun, Qinyu 1 ; Niu, Tingting 1 ; Zhang, Jiaxia 1 ;
作者机构: 1.Anhui Acad Agr Sci, Tea Res Inst, Huangshan, Peoples R China
关键词: arbuscular mycorrhizal fungus; tea plant; root branching; phytohormones; phosphorus; sugar; lipid
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: Arbuscular mycorrhizal fungus (AMF), forming symbiosis with most terrestrial plants, strongly modulates root system architecture (RSA), which is the main characteristic of root in soil, to improve plant growth and development. So far, the studies of AMF on tea plant seedlings are few and the relevant molecular mechanism is not deciphered. In this study, the 6-month-old cutting seedlings of tea plant cultivar "Wancha No.4" were inoculated with an AMF isolate, Rhizophagus intraradices BGC JX04B and harvested after 6 months of growth. The indexes of RSA and sugar contents in root were determined. The transcriptome data in root tips of mycorrhizal and non-mycorrhizal cutting seedlings were obtained by RNA-sequence (Seq) analysis. The results showed that AMF significantly decreased plant growth, but increased the sucrose content in root and the higher classes of lateral root (LR) formation (third and fourth LR). We identified 2047 differentially expressed genes (DEGs) based on the transcriptome data, and DEGs involved in metabolisms of phosphorus (42 DEGs), sugar (39), lipid (67), and plant hormones (39) were excavated out. Variation partitioning analysis showed all these four categories modulated the RSA. In phosphorus (P) metabolism, the phosphate transport and release (DEGs related to purple acid phosphatase) were promoted by AMF inoculation, while DEGs of sugar transport protein in sugar metabolism were downregulated. Lipid metabolism might not be responsible for root branching but for AMF propagation. With respect to phytohormones, DEGs of auxin (13), ethylene (14), and abscisic acid (5) were extensively affected by AMF inoculation, especially for auxin and ethylene. The further partial least squares structural equation modeling analysis indicated that pathways of P metabolism and auxin, as well as the direct way of AMF inoculation, were of the most important in AMF promoting root branching, while ethylene performed a negative role. Overall, our data revealed the alterations of genome-wide gene expression in tea plant roots after inoculation with AMF and provided a molecular basis for the regulatory mechanism of RSA (mainly root branching) changes induced by AMF.
- 相关文献
作者其他论文 更多>>
-
Arbuscular mycorrhizal fungus alleviates anthracnose disease in tea seedlings
作者:Chen, Weili;Ye, Tao;Sun, Qinyu;Niu, Tingting;Zhang, Jiaxia
关键词:arbuscular mycorrhizal fungus; anthracnose; tea plant; plant hormone; antioxidant system
-
Insight into regulation of adventitious root formation by arbuscular mycorrhizal fungus and exogenous auxin in tea plant (Camellia sinensis L.) cuttings
作者:Chen, Weili;Shan, Wenshu;Niu, Tingting;Ye, Tao;Sun, Qinyu;Zhang, Jiaxia
关键词:arbuscular mycorrhizal fungus; tea plant; adventitious root; auxin transport; auxin signal transduction
-
The succinate dehydrogenase PsSDHB is involved in hyphal morphology, chemical stress response and pathogenicity of Phytophthora sojae
作者:Pan, Yuemin;Ye, Tao;Gao, Zhimou;Ye, Tao
关键词:Phytophthora sojae; Succinate dehydrogenase; Hyphal morphology; Pathogenicity; Chemical stress response
-
Correlation of tea green leafhopper occurrence with leaf structure and biochemical components in different tea cultivars
作者:Sun, Qinyu;Chen, Weili;Ge, Chaomei;Ye, Tao;Zhang, Ran;Zhang, Jiaxia
关键词:Tea cultivar; tea green leafhopper; leaf structure; tea polyphenols; correlation