Long-term fertilization regimes change soil nitrification potential by impacting active autotrophic ammonia oxidizers and nitrite oxidizers as assessed by DNA stable isotope probing
文献类型: 外文期刊
作者: Kong, Yali 1 ; Ling, Ning 1 ; Xue, Chao 1 ; Chen, Huan 2 ; Ruan, Yang 1 ; Guo, Junjie 1 ; Zhu, Chen 1 ; Wang, Min 1 ; Shen, 1 ;
作者机构: 1.Nanjing Agr Univ, Jiangsu Prov Key Lab Organ Solid Waste Utilizat, Natl Engn Res Ctr Organ Based Fertilizers, Jiangsu Collaborat Innovat Ctr Solid Organ Waste, Nanjing 210095, Jiangsu, Peoples R China
2.Anhui Acad Agr Sci, Crop Res Inst, Hefei 230031, Anhui, Peoples R China
期刊名称:ENVIRONMENTAL MICROBIOLOGY ( 影响因子:5.491; 五年影响因子:6.438 )
ISSN: 1462-2912
年卷期: 2019 年 21 卷 4 期
页码:
收录情况: SCI
摘要: Chemoautotrophic ammonia-oxidizers and nitrite-oxidizers are responsible for a significant amount of soil nitrate production. The identity and composition of these active nitrifiers in soils under different long-term fertilization regimes remain largely under-investigated. Based on that soil nitrification potential significantly decreased in soils with chemical fertilization (CF) and increased in soils with organic fertilization (OF), a microcosm experiment with DNA stable isotope probing was further conducted to clarify the active nitrifiers. Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were found to actively respond to urea addition in soils with OF and no fertilizer (CK), whereas only AOB were detected in soils with CF. Around 98% of active AOB were Nitrosospira cluster 3a.1 in all tested soils, and more than 90% of active AOA were Nitrososphaera subcluster 1.1 in unfertilized and organically fertilized soils. Nitrite oxidation was performed only by Nitrospira-like bacteria in all soils. The relative abundances of Nitrospira lineage I and VI were 32% and 61%, respectively, in unfertilized soils, and that of Nitrospira lineage II was 97% in fertilized soils, indicating long-term fertilization shifted the composition of active Nitrospira-like bacteria in response to urea. This finding indicates that different fertilizer regimes impact the composition of active nitrifiers, thus, impacting soil nitrification potential.
- 相关文献
作者其他论文 更多>>
-
Maize ZmSRO1e promotes mesocotyl elongation and deep sowing tolerance by inhibiting the activity of ZmbZIP61
作者:Qin, Lumin;Kong, Fangfang;Wei, Lin;Cui, Minghan;Li, Jianhang;Zhu, Chen;Liu, Yue;Xia, Guangmin;Liu, Shuwei;Qin, Lumin
关键词:deep sowing; HY5; maize; Mesocotyl; SRO
-
Suitability of coconut bran and biochar as a composite substrate for lettuce cultivation in aquaponic systems
作者:Zhu, Chen;Lin, Zuo;Fen, Wang;Jiajia, Wang;Xiang, Zhou;Kai, Cui;Yelin, Jiang;Lin, Zuo;Salin, Krishna R.;Yu, Zhang;Yelin, Jiang;Kelai, Zhang
关键词:Biochar; Aquaponic systems; Substrate properties; Microbial community
-
Optimized N application improves N absorption, population dynamics, and ear fruiting traits of wheat
作者:Zhang, Xiangqian;Du, Shizhou;Qiao, Yuqiang;Cao, Chengfu;Chen, Huan;Xu, Yunji
关键词:N use efficiency; leaf area; light interception rate; ear fruiting traits; yield
-
Organic amendments increase crop yield while mitigating greenhouse gas emissions from the perspective of carbon fees in a soybean-wheat system
作者:Zhang, Xin;Zhang, Xin;Qian, Haoyu;Deng, Aixing;Song, Zhenwei;Zhang, Jun;Danso, Frederick;Zheng, Chengyan;Zhang, Weijian;Hua, Keke;Wang, Daozhong;Chen, Huan;Raheem, Abdulkareem;Raheem, Abdulkareem
关键词:Greenhouse gas emissions; Crop straw; Manure; Net ecosystem economic benefit; Soybean-wheat system
-
Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint
作者:Wu, Liuge;Zhang, Xin;Nawaz, Muhammad Mohsin;Danso, Frederick;Chen, Jian;Deng, Aixing;Song, Zhenwei;Zheng, Chengyan;Zhang, Weijian;Zhang, Xin;Chen, Huan;Wang, Daozhong;Jamali, Hizbullah
关键词:wheat; fertilization regimes; energy analysis; carbon footprint; economic analysis
-
Long-term organic and inorganic fertilization alters the diazotrophic abundance, community structure, and co-occurrence patterns in a vertisol
作者:Chen, Huan;Qiao, Yuqiang;Du, Shizhou;Li, Wei;Zhang, Xiangqian;Zhao, Zhu;Cao, Chengfu;Chen, Huan;Zheng, Chengyan;Zhang, Weijian
关键词:Diazotrophic community; nifH; MiSeq sequencing; Real-time quantitative PCR; Long-term fertilization
-
Less N2O emission from newly high-yielding cultivars of winter wheat
作者:Chen, Huan;Qiao, Yuqiang;Du, Shizhou;Cao, Chengfu;Chen, Huan;Zheng, Chengyan;Zhang, Weijian;Chen, Huan;Chen, Fu
关键词:Global warming; Food security; Winter wheat; Cultivar renewal; Nitrous oxide emissions; Grain yield; N uptake