科研产出
基于生猪外形特征图像的瘦肉率估测方法
《农业工程学报 》 2017 EI 北大核心 CSCD
摘要:为实现生猪瘦肉率的快速无损检测,以机器视觉为主要技术,通过生猪的外形特征图像进行瘦肉率估测,为饲养者与收购者提供生猪品级的决策依据。采用MATLAB为开发工具,通过图形用户界面(graphical user interface,GUI)实现软件操作界面,以生猪的侧面及背面图像为研究对象,利用图像处理技术从目标中提取体长、体高、胸深、腹长、臀宽、腰宽等数据,以这些体尺的比例(胸深体高比、臀宽体长比、臀宽腰宽比、腹长体长比)为参数,通过径向基函数(radial basis function,RBF)神经网络进行瘦肉率估测。该文分别对7组生猪外形图像进行处理,4项比例指标的平均估测准确率分别为92.90%、92.44%、95.17%、96.51%,瘦肉率的平均估测准确率为94.35%。结果表明,该文所构造的基于生猪外形特征图像的瘦肉率估测方法工作效率高,成本低,可用于估测生猪瘦肉率。
关键词: 机器视觉 图像分割 模型 瘦肉率 活体猪 RBF神经网络
首页上一页1下一页尾页