科研产出
基于显著性检测的蔬菜鳞翅目害虫图像自动分割算法
《福建农林大学学报(自然科学版) 》 2019 北大核心 CSCD
摘要:提出一种基于显著性检测的害虫图像自动分割算法(S-segmentation算法),首先利用显著性检测方法,结合图像局部区域的颜色距离和空间距离特征,对样本图像作预处理;然后采用无交互式图像分割算法处理显著检测结果图,可实现目标区域的完美分割,避免多次重复设置背景区域.通过对5种鳞翅目幼虫图像进行分割试验,结果表明该算法的分割准确性明显提高,平均分割精确度可达93.14%,较传统图像分割算法提高了约20%,并且复杂度低,运行效率高,分割精确度不受样本数量影响.进一步将该算法应用到体型和颜色多样化的鳞翅目成虫图像分割上,得到的平均分割精确度达到88.22%.
基于生猪外形特征图像的瘦肉率估测方法
《农业工程学报 》 2017 EI 北大核心 CSCD
摘要:为实现生猪瘦肉率的快速无损检测,以机器视觉为主要技术,通过生猪的外形特征图像进行瘦肉率估测,为饲养者与收购者提供生猪品级的决策依据。采用MATLAB为开发工具,通过图形用户界面(graphical user interface,GUI)实现软件操作界面,以生猪的侧面及背面图像为研究对象,利用图像处理技术从目标中提取体长、体高、胸深、腹长、臀宽、腰宽等数据,以这些体尺的比例(胸深体高比、臀宽体长比、臀宽腰宽比、腹长体长比)为参数,通过径向基函数(radial basis function,RBF)神经网络进行瘦肉率估测。该文分别对7组生猪外形图像进行处理,4项比例指标的平均估测准确率分别为92.90%、92.44%、95.17%、96.51%,瘦肉率的平均估测准确率为94.35%。结果表明,该文所构造的基于生猪外形特征图像的瘦肉率估测方法工作效率高,成本低,可用于估测生猪瘦肉率。
关键词: 机器视觉 图像分割 模型 瘦肉率 活体猪 RBF神经网络
首页上一页1下一页尾页