您好,欢迎访问安徽省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
作者:王忠培(精确检索)
作者:张萌(精确检索)
作者:董伟(精确检索)
作者:朱静波(精确检索)
作者:孔娟娟(精确检索)
作者:钱蓉(精确检索)
1条记录
基于迁移学习的多模型水稻病害识别方法研究

安徽农业科学 2021

摘要:水稻病害是影响水稻产量的重要因素之一,使用传统机器学习方法识别农作物病虫害效果并不理想,因此该研究使用深度学习技术结合迁移学习方法识别常见水稻病害。使用当前深度学习领域经典网络模型VGG、ResNet、DenseNet、InceptionResNet、Xception模型作为预训练模型,通过比较不同模型在新任务上的表现,选取性能最好且最稳定的Xception模型作为最终模型。试验结果显示,DenseNet、InceptionResNet、Xception的识别准确率可以达到97%,尤其是Xception模型不仅可以达到98.50%的最高识别准确率而且是最稳定的。该研究通过试验探讨了适用于常见水稻病害智能识别的最佳模型,同时表明了使用迁移学习方法解决新任务的有效性。

关键词: 水稻病害 迁移学习 深度学习 智能识别

 全文链接 请求原文

首页上一页1下一页尾页